diff --git a/assets/locales/en.json b/assets/locales/en.json index 29a07cc..eb724eb 100644 --- a/assets/locales/en.json +++ b/assets/locales/en.json @@ -99,7 +99,7 @@ "command_markov_retrain": "Retraining the Markov model... Please wait.", "command_markov_memory_not_found": "Error: memory file not found!", "command_markov_memory_is_corrupt": "Error: memory file is corrupt!", - "command_markov_retraining": "Processing {processed_data}/{data_size} data points...", + "command_markov_retraining": "Processing {data_size} data points...", "command_markov_retrain_successful": "Markov model retrained successfully using {data_size} data points!", "command_desc_talk":"talks n like stuf", "command_talk_insufficent_text": "I need to learn more from messages before I can talk.", diff --git a/assets/locales/it.json b/assets/locales/it.json index 734e0d2..efb5a60 100644 --- a/assets/locales/it.json +++ b/assets/locales/it.json @@ -100,7 +100,7 @@ "command_markov_retrain": "Rafforzamento del modello Markov in corso... Attendere.", "command_markov_memory_not_found": "Errore: file di memoria non trovato!", "command_markov_memory_is_corrupt": "Errore: file di memoria corrotto!", - "command_markov_retraining": "Elaborazione di {processed_data}/{data_size} punti dati...", + "command_markov_retraining": "Elaborazione di {data_size} punti dati...", "command_markov_retrain_successful": "Modello Markov rafforzato con successo utilizzando {data_size} punti dati!", "command_desc_talk": "parla n come stuf", "command_talk_insufficent_text": "Ho bisogno di imparare di più dai messaggi prima di poter parlare.", diff --git a/bot.py b/bot.py index 4e53488..358ef07 100644 --- a/bot.py +++ b/bot.py @@ -180,8 +180,6 @@ async def retrain(ctx: commands.Context) -> None: for i, data in enumerate(memory): processed_data += 1 - if processed_data % 1000 == 0 or processed_data == data_size: - await send_message(ctx, f"{_('command_markov_retraining').format(processed_data=processed_data, data_size=data_size)}", edit=True, message_reference=processing_message_ref) global markov_model markov_model = train_markov_model(memory)