import discord from discord.ext import commands import os import numpy as np import json import pickle import functools import re import time import asyncio ready = True MODEL_MATCH_STRING = r"[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}" try: import tensorflow as tf import keras from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential, load_model from keras.layers import Embedding, LSTM, Dense from keras.backend import clear_session if tf.config.list_physical_devices('GPU'): print("Using GPU acceleration") elif tf.config.list_physical_devices('Metal'): print("Using Metal for macOS acceleration") except ImportError: print("ERROR: Failed to import TensorFlow. Ensure you have the correct dependencies:") print("tensorflow>=2.15.0") print("For macOS (Apple Silicon): tensorflow-metal") ready = False class TFCallback(keras.callbacks.Callback): def __init__(self, bot, progress_embed: discord.Embed, message): self.embed = progress_embed self.bot = bot self.message = message self.times = [time.time()] async def send_message(self, message: str, description: str, **kwargs): if "epoch" in kwargs: self.times.append(time.time()) avg_epoch_time = np.mean(np.diff(self.times)) description = f"ETA: {round(avg_epoch_time)}s" self.embed.add_field(name=f" - {message}", value=description, inline=False) await self.message.edit(embed=self.embed) def on_train_end(self, logs=None): self.bot.loop.create_task(self.send_message("Training stopped", "Training has been stopped.")) def on_epoch_begin(self, epoch, logs=None): self.bot.loop.create_task(self.send_message(f"Starting epoch {epoch}", "This might take a while", epoch=True)) def on_epoch_end(self, epoch, logs=None): self.bot.loop.create_task(self.send_message(f"Epoch {epoch} ended", f"Accuracy: {round(logs.get('accuracy', 0.0), 4)}")) class Ai: def __init__(self): model_path = settings.get("model_path") if model_path: self.__load_model(model_path) self.is_loaded = model_path is not None self.batch_size = 64 def generate_model_name(self): return time.strftime('%d_%m_%Y-%H_%M', time.localtime()) def __load_model(self, model_path): clear_session() self.model = load_model(os.path.join(model_path, "model.h5")) model_name = os.path.basename(model_path) try: with open(os.path.join(model_path, "tokenizer.pkl"), "rb") as f: self.tokenizer = pickle.load(f) except FileNotFoundError: print("Failed to load tokenizer, using default.") self.tokenizer = Tokenizer() with open("memory.json", "r") as f: self.tokenizer.fit_on_texts(json.load(f)) self.is_loaded = True def reload_model(self): clear_session() model_path = settings.get("model_path") if model_path: self.__load_model(model_path) self.is_loaded = True async def run_async(self, func, bot, *args, **kwargs): return await bot.loop.run_in_executor(None, functools.partial(func, *args, **kwargs)) class Learning(Ai): def create_model(self, memory, epochs=2): memory = memory[:2000] tokenizer = Tokenizer() tokenizer.fit_on_texts(memory) sequences = tokenizer.texts_to_sequences(memory) X, y = [], [] for seq in sequences: for i in range(1, len(seq)): X.append(seq[:i]) y.append(seq[i]) maxlen = max(map(len, X)) X = pad_sequences(X, maxlen=maxlen, padding="pre") y = np.array(y) model = Sequential([ Embedding(input_dim=VOCAB_SIZE, output_dim=128, input_length=maxlen), LSTM(64), Dense(VOCAB_SIZE, activation="softmax") ]) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit(X, y, epochs=epochs, batch_size=64, callbacks=[tf_callback]) self.save_model(model, tokenizer, history) def save_model(self, model, tokenizer, history, name=None): name = name or self.generate_model_name() model_dir = os.path.join("models", name) os.makedirs(model_dir, exist_ok=True) with open(os.path.join(model_dir, "info.json"), "w") as f: json.dump(history.history, f) with open(os.path.join(model_dir, "tokenizer.pkl"), "wb") as f: pickle.dump(tokenizer, f) model.save(os.path.join(model_dir, "model.h5")) class Generation(Ai): def generate_sentence(self, word_amount, seed): if not self.is_loaded: return False for _ in range(word_amount): token_list = self.tokenizer.texts_to_sequences([seed])[0] token_list = pad_sequences([token_list], maxlen=self.model.input_shape[1], padding="pre") predicted_word_index = np.argmax(self.model.predict(token_list, verbose=0), axis=-1)[0] output_word = next((w for w, i in self.tokenizer.word_index.items() if i == predicted_word_index), "") seed += " " + output_word return seed VOCAB_SIZE = 100_000 settings = {} learning = Learning() generation = Generation() tf_callback = None async def setup(bot): await bot.add_cog(Tf(bot))