forked from gooberinc/goober
191 lines
5.9 KiB
Python
191 lines
5.9 KiB
Python
import discord
|
|
from discord.ext import commands
|
|
import os
|
|
import numpy as np
|
|
import json
|
|
import pickle
|
|
import functools
|
|
import re
|
|
import time
|
|
import asyncio
|
|
|
|
ready = True
|
|
MODEL_MATCH_STRING = r"[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
|
|
|
|
try:
|
|
import tensorflow as tf
|
|
import keras
|
|
from keras.preprocessing.text import Tokenizer
|
|
from keras.preprocessing.sequence import pad_sequences
|
|
from keras.models import Sequential, load_model
|
|
from keras.layers import Embedding, LSTM, Dense
|
|
from keras.backend import clear_session
|
|
|
|
if tf.config.list_physical_devices("GPU"):
|
|
print("Using GPU acceleration")
|
|
elif tf.config.list_physical_devices("Metal"):
|
|
print("Using Metal for macOS acceleration")
|
|
except ImportError:
|
|
print(
|
|
"ERROR: Failed to import TensorFlow. Ensure you have the correct dependencies:"
|
|
)
|
|
print("tensorflow>=2.15.0")
|
|
print("For macOS (Apple Silicon): tensorflow-metal")
|
|
ready = False
|
|
|
|
|
|
class TFCallback(keras.callbacks.Callback):
|
|
def __init__(self, bot, progress_embed: discord.Embed, message):
|
|
self.embed = progress_embed
|
|
self.bot = bot
|
|
self.message = message
|
|
self.times = [time.time()]
|
|
|
|
async def send_message(self, message: str, description: str, **kwargs):
|
|
if "epoch" in kwargs:
|
|
self.times.append(time.time())
|
|
avg_epoch_time = np.mean(np.diff(self.times))
|
|
description = f"ETA: {round(avg_epoch_time)}s"
|
|
self.embed.add_field(
|
|
name=f"<t:{round(time.time())}:t> - {message}",
|
|
value=description,
|
|
inline=False,
|
|
)
|
|
await self.message.edit(embed=self.embed)
|
|
|
|
def on_train_end(self, logs=None):
|
|
self.bot.loop.create_task(
|
|
self.send_message("Training stopped", "Training has been stopped.")
|
|
)
|
|
|
|
def on_epoch_begin(self, epoch, logs=None):
|
|
self.bot.loop.create_task(
|
|
self.send_message(
|
|
f"Starting epoch {epoch}", "This might take a while", epoch=True
|
|
)
|
|
)
|
|
|
|
def on_epoch_end(self, epoch, logs=None):
|
|
self.bot.loop.create_task(
|
|
self.send_message(
|
|
f"Epoch {epoch} ended",
|
|
f"Accuracy: {round(logs.get('accuracy', 0.0), 4)}",
|
|
)
|
|
)
|
|
|
|
|
|
class Ai:
|
|
def __init__(self):
|
|
model_path = settings.get("model_path")
|
|
if model_path:
|
|
self.__load_model(model_path)
|
|
self.is_loaded = model_path is not None
|
|
self.batch_size = 64
|
|
|
|
def generate_model_name(self):
|
|
return time.strftime("%d_%m_%Y-%H_%M", time.localtime())
|
|
|
|
def __load_model(self, model_path):
|
|
clear_session()
|
|
self.model = load_model(os.path.join(model_path, "model.h5"))
|
|
model_name = os.path.basename(model_path)
|
|
try:
|
|
with open(os.path.join(model_path, "tokenizer.pkl"), "rb") as f:
|
|
self.tokenizer = pickle.load(f)
|
|
except FileNotFoundError:
|
|
print("Failed to load tokenizer, using default.")
|
|
self.tokenizer = Tokenizer()
|
|
with open("memory.json", "r") as f:
|
|
self.tokenizer.fit_on_texts(json.load(f))
|
|
self.is_loaded = True
|
|
|
|
def reload_model(self):
|
|
clear_session()
|
|
model_path = settings.get("model_path")
|
|
if model_path:
|
|
self.__load_model(model_path)
|
|
self.is_loaded = True
|
|
|
|
async def run_async(self, func, bot, *args, **kwargs):
|
|
return await bot.loop.run_in_executor(
|
|
None, functools.partial(func, *args, **kwargs)
|
|
)
|
|
|
|
|
|
class Learning(Ai):
|
|
def create_model(self, memory, epochs=2):
|
|
memory = memory[:2000]
|
|
tokenizer = Tokenizer()
|
|
tokenizer.fit_on_texts(memory)
|
|
sequences = tokenizer.texts_to_sequences(memory)
|
|
X, y = [], []
|
|
for seq in sequences:
|
|
for i in range(1, len(seq)):
|
|
X.append(seq[:i])
|
|
y.append(seq[i])
|
|
maxlen = max(map(len, X))
|
|
X = pad_sequences(X, maxlen=maxlen, padding="pre")
|
|
y = np.array(y)
|
|
|
|
model = Sequential(
|
|
[
|
|
Embedding(input_dim=VOCAB_SIZE, output_dim=128, input_length=maxlen),
|
|
LSTM(64),
|
|
Dense(VOCAB_SIZE, activation="softmax"),
|
|
]
|
|
)
|
|
|
|
model.compile(
|
|
optimizer="adam",
|
|
loss="sparse_categorical_crossentropy",
|
|
metrics=["accuracy"],
|
|
)
|
|
history = model.fit(X, y, epochs=epochs, batch_size=64, callbacks=[tf_callback])
|
|
self.save_model(model, tokenizer, history)
|
|
|
|
def save_model(self, model, tokenizer, history, name=None):
|
|
name = name or self.generate_model_name()
|
|
model_dir = os.path.join("models", name)
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
with open(os.path.join(model_dir, "info.json"), "w") as f:
|
|
json.dump(history.history, f)
|
|
with open(os.path.join(model_dir, "tokenizer.pkl"), "wb") as f:
|
|
pickle.dump(tokenizer, f)
|
|
model.save(os.path.join(model_dir, "model.h5"))
|
|
|
|
|
|
class Generation(Ai):
|
|
def generate_sentence(self, word_amount, seed):
|
|
if not self.is_loaded:
|
|
return False
|
|
for _ in range(word_amount):
|
|
token_list = self.tokenizer.texts_to_sequences([seed])[0]
|
|
token_list = pad_sequences(
|
|
[token_list], maxlen=self.model.input_shape[1], padding="pre"
|
|
)
|
|
predicted_word_index = np.argmax(
|
|
self.model.predict(token_list, verbose=0), axis=-1
|
|
)[0]
|
|
output_word = next(
|
|
(
|
|
w
|
|
for w, i in self.tokenizer.word_index.items()
|
|
if i == predicted_word_index
|
|
),
|
|
"",
|
|
)
|
|
seed += " " + output_word
|
|
return seed
|
|
|
|
|
|
VOCAB_SIZE = 100_000
|
|
settings = {}
|
|
learning = Learning()
|
|
generation = Generation()
|
|
|
|
tf_callback = None
|
|
|
|
|
|
async def setup(bot):
|
|
await bot.add_cog(Tf(bot))
|