goober/assets/cogs/tf.py.disabled

155 lines
5.6 KiB
Text
Raw Normal View History

2025-03-16 16:39:26 +01:00
import discord
from discord.ext import commands
import os
import numpy as np
import json
import pickle
import functools
import re
import time
import asyncio
2025-03-16 19:37:48 +01:00
ready = True
MODEL_MATCH_STRING = r"[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
2025-03-16 16:39:26 +01:00
try:
import tensorflow as tf
from tensorflow import keras
2025-03-16 19:37:48 +01:00
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.backend import clear_session
if tf.config.list_physical_devices('GPU'):
print("Using GPU acceleration")
elif tf.config.list_physical_devices('Metal'):
print("Using Metal for macOS acceleration")
2025-03-16 16:39:26 +01:00
except ImportError:
2025-03-16 19:37:48 +01:00
print("ERROR: Failed to import TensorFlow. Ensure you have the correct dependencies:")
print("tensorflow>=2.15.0")
print("For macOS (Apple Silicon): tensorflow-metal")
2025-03-16 16:39:26 +01:00
ready = False
2025-03-16 19:37:48 +01:00
2025-03-16 16:39:26 +01:00
class TFCallback(keras.callbacks.Callback):
2025-03-16 19:37:48 +01:00
def __init__(self, bot, progress_embed: discord.Embed, message):
self.embed = progress_embed
self.bot = bot
2025-03-16 16:39:26 +01:00
self.message = message
2025-03-16 19:37:48 +01:00
self.times = [time.time()]
2025-03-16 16:39:26 +01:00
2025-03-16 19:37:48 +01:00
async def send_message(self, message: str, description: str, **kwargs):
2025-03-16 16:39:26 +01:00
if "epoch" in kwargs:
self.times.append(time.time())
2025-03-16 19:37:48 +01:00
avg_epoch_time = np.mean(np.diff(self.times))
description = f"ETA: {round(avg_epoch_time)}s"
self.embed.add_field(name=f"<t:{round(time.time())}:t> - {message}", value=description, inline=False)
2025-03-16 16:39:26 +01:00
await self.message.edit(embed=self.embed)
2025-03-16 19:37:48 +01:00
def on_train_end(self, logs=None):
self.bot.loop.create_task(self.send_message("Training stopped", "Training has been stopped."))
2025-03-16 16:39:26 +01:00
def on_epoch_begin(self, epoch, logs=None):
2025-03-16 19:37:48 +01:00
self.bot.loop.create_task(self.send_message(f"Starting epoch {epoch}", "This might take a while", epoch=True))
2025-03-16 16:39:26 +01:00
def on_epoch_end(self, epoch, logs=None):
2025-03-16 19:37:48 +01:00
self.bot.loop.create_task(self.send_message(f"Epoch {epoch} ended", f"Accuracy: {round(logs.get('accuracy', 0.0), 4)}"))
2025-03-16 16:39:26 +01:00
class Ai:
def __init__(self):
model_path = settings.get("model_path")
if model_path:
self.__load_model(model_path)
self.is_loaded = model_path is not None
self.batch_size = 64
2025-03-16 19:37:48 +01:00
def generate_model_name(self):
return time.strftime('%d_%m_%Y-%H_%M', time.localtime())
2025-03-16 16:39:26 +01:00
2025-03-16 19:37:48 +01:00
def __load_model(self, model_path):
2025-03-16 16:39:26 +01:00
clear_session()
2025-03-16 19:37:48 +01:00
self.model = load_model(os.path.join(model_path, "model.h5"))
model_name = os.path.basename(model_path)
2025-03-16 16:39:26 +01:00
try:
2025-03-16 19:37:48 +01:00
with open(os.path.join(model_path, "tokenizer.pkl"), "rb") as f:
2025-03-16 16:39:26 +01:00
self.tokenizer = pickle.load(f)
except FileNotFoundError:
2025-03-16 19:37:48 +01:00
print("Failed to load tokenizer, using default.")
2025-03-16 16:39:26 +01:00
self.tokenizer = Tokenizer()
2025-03-16 19:37:48 +01:00
with open("memory.json", "r") as f:
self.tokenizer.fit_on_texts(json.load(f))
2025-03-16 16:39:26 +01:00
self.is_loaded = True
2025-03-16 19:37:48 +01:00
2025-03-16 16:39:26 +01:00
def reload_model(self):
clear_session()
2025-03-16 19:37:48 +01:00
model_path = settings.get("model_path")
2025-03-16 16:39:26 +01:00
if model_path:
2025-03-16 19:37:48 +01:00
self.__load_model(model_path)
2025-03-16 16:39:26 +01:00
self.is_loaded = True
2025-03-16 19:37:48 +01:00
async def run_async(self, func, bot, *args, **kwargs):
return await bot.loop.run_in_executor(None, functools.partial(func, *args, **kwargs))
2025-03-16 16:39:26 +01:00
class Learning(Ai):
2025-03-16 19:37:48 +01:00
def create_model(self, memory, epochs=2):
memory = memory[:2000]
tokenizer = Tokenizer()
tokenizer.fit_on_texts(memory)
2025-03-16 16:39:26 +01:00
sequences = tokenizer.texts_to_sequences(memory)
2025-03-16 19:37:48 +01:00
X, y = [], []
2025-03-16 16:39:26 +01:00
for seq in sequences:
for i in range(1, len(seq)):
2025-03-16 19:37:48 +01:00
X.append(seq[:i])
2025-03-16 16:39:26 +01:00
y.append(seq[i])
2025-03-16 19:37:48 +01:00
maxlen = max(map(len, X))
X = pad_sequences(X, maxlen=maxlen, padding="pre")
2025-03-16 16:39:26 +01:00
y = np.array(y)
2025-03-16 19:37:48 +01:00
model = Sequential([
Embedding(input_dim=VOCAB_SIZE, output_dim=128, input_length=maxlen),
LSTM(64),
Dense(VOCAB_SIZE, activation="softmax")
])
2025-03-16 16:39:26 +01:00
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
2025-03-16 19:37:48 +01:00
history = model.fit(X, y, epochs=epochs, batch_size=64, callbacks=[tf_callback])
2025-03-16 16:39:26 +01:00
self.save_model(model, tokenizer, history)
2025-03-16 19:37:48 +01:00
def save_model(self, model, tokenizer, history, name=None):
name = name or self.generate_model_name()
model_dir = os.path.join("models", name)
os.makedirs(model_dir, exist_ok=True)
2025-03-16 16:39:26 +01:00
2025-03-16 19:37:48 +01:00
with open(os.path.join(model_dir, "info.json"), "w") as f:
json.dump(history.history, f)
with open(os.path.join(model_dir, "tokenizer.pkl"), "wb") as f:
pickle.dump(tokenizer, f)
model.save(os.path.join(model_dir, "model.h5"))
2025-03-16 16:39:26 +01:00
class Generation(Ai):
2025-03-16 19:37:48 +01:00
def generate_sentence(self, word_amount, seed):
2025-03-16 16:39:26 +01:00
if not self.is_loaded:
return False
for _ in range(word_amount):
token_list = self.tokenizer.texts_to_sequences([seed])[0]
2025-03-16 19:37:48 +01:00
token_list = pad_sequences([token_list], maxlen=self.model.input_shape[1], padding="pre")
predicted_word_index = np.argmax(self.model.predict(token_list, verbose=0), axis=-1)[0]
output_word = next((w for w, i in self.tokenizer.word_index.items() if i == predicted_word_index), "")
2025-03-16 16:39:26 +01:00
seed += " " + output_word
return seed
2025-03-16 19:37:48 +01:00
VOCAB_SIZE = 100_000
settings = {}
learning = Learning()
generation = Generation()
2025-03-16 16:39:26 +01:00
2025-03-16 19:37:48 +01:00
tf_callback = None
2025-03-16 16:39:26 +01:00
async def setup(bot):
2025-03-16 19:37:48 +01:00
await bot.add_cog(Tf(bot))