goober/customcommands/tf.py

341 lines
13 KiB
Python
Raw Normal View History

2025-01-05 23:34:58 +02:00
import discord
from discord.ext import commands
import os
from typing import List, TypedDict
import numpy as np
import json
from time import strftime, localtime
import pickle
import functools
2025-01-05 23:34:58 +02:00
import re
import time
import asyncio
2025-01-05 23:34:58 +02:00
ready: bool = True
MODEL_MATCH_STRING = "[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
try:
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.models import load_model
from keras.backend import clear_session
tf.config.optimizer.set_jit(True)
except ImportError:
print("ERROR: Failed to import Tensorflow. Here is a list of required dependencies:",(
"tensorflow==2.10.0"
"(for Nvidia users: tensorflow-gpu==2.10.0)"
"(for macOS: tensorflow-metal==0.6.0, tensorflow-macos==2.10.0)"
"numpy~=1.23"
))
ready = False
class TFCallback(keras.callbacks.Callback):
def __init__(self,bot, progress_embed:discord.Embed, message):
self.embed:discord.Embed = progress_embed
self.bot:commands.Bot = bot
self.message = message
self.times:List[int] = [time.time()]
def on_train_begin(self, logs=None):
pass
async def send_message(self,message:str, description:str, **kwargs):
if "epoch" in kwargs:
self.times.append(time.time())
average_epoch_time:int = np.average(np.diff(np.array(self.times)))
description = f"ETA: {round(average_epoch_time)}s"
self.embed.add_field(name=f"<t:{round(time.time())}:t> - {message}",value=description,inline=False)
await self.message.edit(embed=self.embed)
def on_train_end(self,logs=None):
self.bot.loop.create_task(self.send_message("Training stopped", "training has been stopped."))
def on_epoch_begin(self, epoch, logs=None):
self.bot.loop.create_task(self.send_message(f"Starting epoch {epoch}","This might take a while", epoch=True))
def on_epoch_end(self, epoch, logs=None):
self.bot.loop.create_task(self.send_message(f"Epoch {epoch} ended",f"Accuracy: {round(logs.get('accuracy',0.0),4)}"))
2025-01-05 23:34:58 +02:00
class Ai:
def __init__(self):
model_path = settings.get("model_path")
if model_path:
self.__load_model(model_path)
self.is_loaded = model_path is not None
self.batch_size = 64
def get_model_name_from_path(self,path:str):
match:re.Match = re.search(MODEL_MATCH_STRING, path)
return path[match.start():][:match.end()]
def generate_model_name(self) -> str:
return strftime('%d_%m_%Y-%H_%M', localtime())
def generate_model_abs_path(self, name:str):
name = name or self.generate_model_name()
return os.path.join(".","models",self.generate_model_name(),"model.h5")
def generate_tokenizer_abs_path(self, name:str):
name = name or self.generate_model_name()
return os.path.join(".","models",name,"tokenizer.pkl")
def generate_info_abs_path(self,name:str):
name = name or self.generate_model_name()
return os.path.join(".","models",name,"info.json")
def save_model(self,model, tokenizer, history, _name:str=None):
name:str = _name or self.generate_model_name()
os.makedirs(os.path.join(".","models",name), exist_ok=True)
with open(self.generate_info_abs_path(name),"w") as f:
json.dump(history.history,f)
with open(self.generate_tokenizer_abs_path(name), "wb") as f:
pickle.dump(tokenizer,f)
model.save(self.generate_model_abs_path(name))
def __load_model(self, model_path:str):
clear_session()
self.model = load_model(os.path.join(model_path,"model.h5"))
model_name:str = self.get_model_name_from_path(model_path)
try:
with open(self.generate_tokenizer_abs_path(model_name),"rb") as f:
self.tokenizer = pickle.load(f)
except FileNotFoundError:
print("Failed to load tokenizer for model... Using default")
self.tokenizer = Tokenizer()
with open("memory.json","r") as f:
self.tokenizer.fit_on_sequences(json.load(f))
self.is_loaded = True
def reload_model(self):
clear_session()
model_path:str = settings.get("model_path")
if model_path:
self.model = self.__load_model(model_path)
self.is_loaded = True
async def run_async(self,func,bot,*args,**kwargs):
func = functools.partial(func,*args,**kwargs)
return await bot.loop.run_in_executor(None,func)
2025-01-05 23:34:58 +02:00
class Learning(Ai):
def __init__(self):
super().__init__()
def __generate_labels_and_inputs(self,memory: List[str], tokenizer=None) -> tuple:
if not tokenizer:
tokenizer = Tokenizer()
tokenizer.fit_on_texts(memory)
sequences = tokenizer.texts_to_sequences(memory)
x = []
y = []
for seq in sequences:
for i in range(1, len(seq)):
x.append(seq[:i])
y.append(seq[i])
return x,y, tokenizer
def create_model(self,memory: list, iters:int=2):
memory = memory[:2000]
2025-01-05 23:34:58 +02:00
X,y,tokenizer = self.__generate_labels_and_inputs(memory)
maxlen:int = max([len(x) for x in X])
x_pad = pad_sequences(X, maxlen=maxlen, padding="pre")
y = np.array(y)
model = Sequential()
model.add(Embedding(input_dim=VOCAB_SIZE,output_dim=128,input_length=maxlen))
model.add(LSTM(64))
model.add(Dense(VOCAB_SIZE, activation="softmax"))
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
history = model.fit(x_pad, y, epochs=iters, batch_size=64, callbacks=[tf_callback])
2025-01-05 23:34:58 +02:00
self.save_model(model, tokenizer, history)
return
2025-01-05 23:34:58 +02:00
def add_training(self,memory: List[str], iters:int=2):
tokenizer_path = os.path.join(settings.get("model_path"),"tokenizer.pkl")
with open(tokenizer_path, "rb") as f:
tokenizer = pickle.load(f)
X,y,_ = self.__generate_labels_and_inputs(memory, tokenizer)
maxlen:int = max([len(x) for x in X])
x_pad = pad_sequences(X, maxlen=maxlen, padding="pre")
y = np.array(y)
history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64, callbacks=[tf_callback]) # Ideally, validation data would be seperate from the actual data
2025-01-05 23:34:58 +02:00
self.save_model(self.model,tokenizer,history,self.get_model_name_from_path(settings.get("model_path")))
return
2025-01-05 23:34:58 +02:00
class Generation(Ai):
def __init__(self):
super().__init__()
def generate_sentence(self, word_amount:int, seed:str):
if not self.is_loaded:
return False
for _ in range(word_amount):
token_list = self.tokenizer.texts_to_sequences([seed])[0]
token_list = pad_sequences([token_list], maxlen=self.model.layers[0].input_shape[1], padding="pre")
output_word = "" # Sometimes model fails to predict the word, so using a fallback
predicted_probs = self.model.predict(token_list, verbose=0)
predicted_word_index = np.argmax(predicted_probs, axis=-1)[0]
for word, index in self.tokenizer.word_index.items():
if index == predicted_word_index:
output_word = word
break
seed += " " + output_word
return seed
VOCAB_SIZE = 100_000
SETTINGS_TYPE = TypedDict("SETTINGS_TYPE", {
"model_path":str, # path to the base folder of the model, aka .../models/05-01-2025-22_31/
"tokenizer_path":str,
})
tf_callback:TFCallback
2025-01-05 23:34:58 +02:00
model_dropdown_items = []
settings: SETTINGS_TYPE = {}
target_message:int
2025-01-05 23:34:58 +02:00
learning:Learning
generation: Generation
class Settings:
def __init__(self):
self.settings_path:str = os.path.join(".","models","settings.json")
def load(self):
global settings
try:
with open(self.settings_path,"r") as f:
settings = json.load(f)
except FileNotFoundError:
with open(self.settings_path,"w") as f:
json.dump({},f)
def change_model(self,new_model_base_path:str):
global settings
new_model_path = os.path.join(".","models",new_model_base_path)
with open(self.settings_path,"r") as f:
settings = json.load(f)
settings["model_path"] = new_model_path
with open(self.settings_path, "w") as f:
json.dump(settings,f)
class Dropdown(discord.ui.Select):
def __init__(self, items:List[str]):
global model_dropdown_items
model_dropdown_items = []
for item in items:
model_dropdown_items.append(
discord.SelectOption(label=item)
)
super().__init__(placeholder="Select model", options=model_dropdown_items)
async def callback(self, interaction: discord.Interaction):
if int(interaction.user.id) != int(os.getenv("ownerid")):
await interaction.message.channel.send("KILL YOURSELF")
Settings().change_model(self.values[0])
await interaction.message.channel.send(f"Changed model to {self.values[0]}")
class DropdownView(discord.ui.View):
def __init__(self, timeout, models):
super().__init__(timeout=timeout)
self.add_item(Dropdown(models))
class Tf(commands.Cog):
2025-01-05 23:34:58 +02:00
def __init__(self,bot):
global learning, generation, ready
2025-01-05 23:34:58 +02:00
os.makedirs(os.path.join(".","models"),exist_ok=True)
Settings().load()
self.bot = bot
learning = Learning()
generation = Generation()
@commands.command()
async def start(self,ctx):
await ctx.defer()
await ctx.send("hi")
@commands.command()
async def generate(self,ctx,seed:str,word_amount:int=5):
await ctx.defer()
await ctx.send(generation.generate_sentence(word_amount,seed))
@commands.command()
async def create(self,ctx:commands.Context, epochs:int=3):
global tf_callback
2025-01-05 23:34:58 +02:00
await ctx.defer()
with open("memory.json","r") as f:
memory:List[str] = json.load(f)
await ctx.send("Initializing tensorflow")
embed = discord.Embed(title="Creating a model...", description="Progress of creating a model")
embed.set_footer(text="Note: Progress tracking might report delayed / wrong data, since the function is run asynchronously")
target_message:discord.Message = await ctx.send(embed=embed)
tf_callback = TFCallback(self.bot,embed,target_message)
await learning.run_async(learning.create_model,self.bot,memory,epochs)
embed = target_message.embeds[0]
embed.add_field(name=f"<t:{round(time.time())}:t> Finished",value="Model saved.")
await target_message.edit(embed=embed)
2025-01-05 23:34:58 +02:00
@commands.command()
async def train(self,ctx, epochs:int=2):
global tf_callback
2025-01-05 23:34:58 +02:00
await ctx.defer()
with open("memory.json","r") as f:
memory:List[str] = json.load(f)
embed = discord.Embed(title="Training model...", description="Progress of training model")
target_message = await ctx.send(embed=embed)
tf_callback = TFCallback(self.bot,embed,target_message)
await learning.run_async(learning.add_training,self.bot,memory,epochs)
2025-01-05 23:34:58 +02:00
await ctx.send("Finished!")
@commands.command()
async def change(self,ctx,model:str=None):
embed = discord.Embed(title="Change model",description="Which model would you like to use?")
if model is None:
models:List[str] = os.listdir(os.path.join(".","models"))
models = [folder for folder in models if re.match(MODEL_MATCH_STRING,folder)]
if len(models) == 0:
models = ["No models available."]
await ctx.send(embed=embed,view=DropdownView(90,models))
learning.reload_model()
generation.reload_model()
async def setup(bot):
await bot.add_cog(Tf(bot))