made a .json and .pkl file for each server
This commit is contained in:
parent
cae1418dd7
commit
587d24d520
2 changed files with 196 additions and 70 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -4,3 +4,5 @@ current_version.txt
|
|||
MEMORY_LOADED
|
||||
memory.json
|
||||
*.pkl
|
||||
memories/
|
||||
models/
|
256
bot.py
256
bot.py
|
@ -26,6 +26,10 @@ analyzer = SentimentIntensityAnalyzer()
|
|||
|
||||
print(splashtext) # you can use https://patorjk.com/software/taag/ for 3d text or just remove this entirely
|
||||
|
||||
os.makedirs("memories", exist_ok=True)
|
||||
os.makedirs("models", exist_ok=True)
|
||||
|
||||
|
||||
def download_json():
|
||||
locales_dir = "locales"
|
||||
response = requests.get(f"{VERSION_URL}/goob/locales/{LOCALE}.json")
|
||||
|
@ -121,20 +125,18 @@ def register_name(NAME):
|
|||
register_name(NAME)
|
||||
|
||||
def save_markov_model(model, filename='markov_model.pkl'):
|
||||
with open(filename, 'wb') as f:
|
||||
model_file = f"models/{filename}"
|
||||
with open(model_file, "wb") as f:
|
||||
pickle.dump(model, f)
|
||||
print(f"Markov model saved to {filename}.")
|
||||
print(f"{GREEN}Markov model saved to {model_file}{RESET}")
|
||||
|
||||
def load_markov_model(filename='markov_model.pkl'):
|
||||
def load_markov_model(server_id=None):
|
||||
if server_id:
|
||||
filename = f"markov_model_{server_id}.pkl"
|
||||
else:
|
||||
filename = "markov_model.pkl"
|
||||
|
||||
try:
|
||||
with open(filename, 'rb') as f:
|
||||
model = pickle.load(f)
|
||||
print(f"{GREEN}{get_translation(LOCALE, 'model_loaded')} {filename}.{RESET}")
|
||||
return model
|
||||
except FileNotFoundError:
|
||||
print(f"{RED}{filename} {get_translation(LOCALE, 'not_found')}{RESET}")
|
||||
return None
|
||||
model_file = f"models/{filename}"
|
||||
|
||||
def get_latest_version_info():
|
||||
|
||||
|
@ -173,7 +175,7 @@ def generate_sha256_of_current_file():
|
|||
|
||||
|
||||
latest_version = "0.0.0"
|
||||
local_version = "0.14.8.3"
|
||||
local_version = "rewrite/seperate-memories"
|
||||
os.environ['gooberlocal_version'] = local_version
|
||||
|
||||
|
||||
|
@ -226,39 +228,50 @@ def get_file_info(file_path):
|
|||
|
||||
nltk.download('punkt')
|
||||
|
||||
def load_memory():
|
||||
data = []
|
||||
def load_memory(server_id=None):
|
||||
if server_id:
|
||||
memory_file = f"memories/memory_{server_id}.json"
|
||||
else:
|
||||
memory_file = "memories/memory.json"
|
||||
|
||||
# load data from MEMORY_FILE
|
||||
data = []
|
||||
try:
|
||||
with open(MEMORY_FILE, "r") as f:
|
||||
with open(memory_file, "r") as f:
|
||||
data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
except json.JSONDecodeError:
|
||||
print(f"{RED}Error decoding memory file {memory_file}{RESET}")
|
||||
|
||||
if not os.path.exists(MEMORY_LOADED_FILE):
|
||||
try:
|
||||
with open(DEFAULT_DATASET_FILE, "r") as f:
|
||||
default_data = json.load(f)
|
||||
data.extend(default_data)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
with open(MEMORY_LOADED_FILE, "w") as f:
|
||||
f.write("Data loaded")
|
||||
return data
|
||||
|
||||
def save_memory(memory):
|
||||
with open(MEMORY_FILE, "w") as f:
|
||||
def save_memory(memory, server_id=None):
|
||||
if server_id:
|
||||
memory_file = f"memories/memory_{server_id}.json"
|
||||
else:
|
||||
memory_file = "memories/memory.json"
|
||||
|
||||
with open(memory_file, "w") as f:
|
||||
json.dump(memory, f, indent=4)
|
||||
|
||||
def train_markov_model(memory, additional_data=None):
|
||||
def train_markov_model(memory, additional_data=None, server_id=None):
|
||||
if not memory:
|
||||
return None
|
||||
|
||||
text = "\n".join(memory)
|
||||
if additional_data:
|
||||
text += "\n" + "\n".join(additional_data)
|
||||
model = markovify.NewlineText(text, state_size=2)
|
||||
return model
|
||||
|
||||
try:
|
||||
model = markovify.NewlineText(text, state_size=2)
|
||||
if server_id:
|
||||
model_filename = f"markov_model_{server_id}.pkl"
|
||||
save_markov_model(model, model_filename)
|
||||
return model
|
||||
except Exception as e:
|
||||
print(f"{RED}Error training model: {e}{RESET}")
|
||||
return None
|
||||
|
||||
#this doesnt work and im extremely pissed and mad
|
||||
def append_mentions_to_18digit_integer(message):
|
||||
pattern = r'\b\d{18}\b'
|
||||
|
@ -381,42 +394,144 @@ async def send_message(ctx, message=None, embed=None, file=None, edit=False, mes
|
|||
sent_message = await ctx.send(file=file)
|
||||
return sent_message
|
||||
|
||||
@bot.hybrid_command(description=f"{get_translation(LOCALE, 'command_desc_retrain')}")
|
||||
async def retrain(ctx):
|
||||
@bot.hybrid_command(description="Retrain Markov models for servers")
|
||||
@app_commands.choices(option=[
|
||||
app_commands.Choice(name="Retrain current server", value="current"),
|
||||
app_commands.Choice(name="Retrain all servers", value="all"),
|
||||
app_commands.Choice(name="Select servers to retrain", value="select")
|
||||
])
|
||||
async def retrain_models(ctx, option: app_commands.Choice[str]):
|
||||
if ctx.author.id != ownerid:
|
||||
return
|
||||
return await ctx.send("You don't have permission to use this command.", ephemeral=True)
|
||||
|
||||
if option.value == "current":
|
||||
server_id = ctx.guild.id if ctx.guild else "DM"
|
||||
await retrain_single_server(ctx, server_id)
|
||||
|
||||
elif option.value == "all":
|
||||
await retrain_all_servers(ctx)
|
||||
|
||||
elif option.value == "select":
|
||||
await show_server_selection(ctx)
|
||||
|
||||
async def retrain_single_server(ctx, server_id):
|
||||
memory_file = f"memories/memory_{server_id}.json"
|
||||
model_file = f"models/markov_model_{server_id}.pkl"
|
||||
|
||||
message_ref = await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_retrain')}")
|
||||
try:
|
||||
with open(MEMORY_FILE, 'r') as f:
|
||||
with open(memory_file, 'r') as f:
|
||||
memory = json.load(f)
|
||||
except FileNotFoundError:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_memory_not_found')}")
|
||||
return
|
||||
except json.JSONDecodeError:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_memory_is_corrupt')}")
|
||||
return
|
||||
data_size = len(memory)
|
||||
processed_data = 0
|
||||
processing_message_ref = await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_retraining').format(processed_data=processed_data, data_size=data_size)}")
|
||||
start_time = time.time()
|
||||
for i, data in enumerate(memory):
|
||||
processed_data += 1
|
||||
if processed_data % 1000 == 0 or processed_data == data_size:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_retraining').format(processed_data=processed_data, data_size=data_size)}", edit=True, message_reference=processing_message_ref)
|
||||
return await ctx.send(f"No memory data found for server {server_id}", ephemeral=True)
|
||||
|
||||
global markov_model
|
||||
processing_msg = await ctx.send(f"Retraining model for server {server_id}...")
|
||||
|
||||
markov_model = train_markov_model(memory)
|
||||
save_markov_model(markov_model)
|
||||
model = train_markov_model(memory, server_id=server_id)
|
||||
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_markov_retrain_successful').format(data_size=data_size)}", edit=True, message_reference=processing_message_ref)
|
||||
if model:
|
||||
await processing_msg.edit(content=f"Successfully retrained model for server {server_id}")
|
||||
else:
|
||||
await processing_msg.edit(content=f"Failed to retrain model for server {server_id}")
|
||||
|
||||
async def retrain_all_servers(ctx):
|
||||
memory_files = [f for f in os.listdir("memories/") if f.startswith("memory_") and f.endswith(".json")]
|
||||
|
||||
if not memory_files:
|
||||
return await ctx.send("No server memory files found to retrain.", ephemeral=True)
|
||||
|
||||
progress_msg = await ctx.send(f"Retraining models for {len(memory_files)} servers...")
|
||||
success_count = 0
|
||||
|
||||
for mem_file in memory_files:
|
||||
try:
|
||||
server_id = mem_file.replace("memory_", "").replace(".json", "")
|
||||
with open(f"memories/{mem_file}", 'r') as f:
|
||||
memory = json.load(f)
|
||||
|
||||
model = train_markov_model(memory, server_id=server_id)
|
||||
if model:
|
||||
success_count += 1
|
||||
|
||||
if success_count % 5 == 0:
|
||||
await progress_msg.edit(content=f"Retraining in progress... {success_count}/{len(memory_files)} completed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error retraining {mem_file}: {e}")
|
||||
|
||||
await progress_msg.edit(content=f"Retraining complete successfully retrained {success_count}/{len(memory_files)} servers")
|
||||
|
||||
async def show_server_selection(ctx):
|
||||
memory_files = [f for f in os.listdir("memories/") if f.startswith("memory_") and f.endswith(".json")]
|
||||
|
||||
if not memory_files:
|
||||
return await ctx.send("No server memory files found.", ephemeral=True)
|
||||
options = []
|
||||
for mem_file in memory_files:
|
||||
server_id = mem_file.replace("memory_", "").replace(".json", "")
|
||||
server_name = f"Server {server_id}"
|
||||
if server_id != "DM":
|
||||
guild = bot.get_guild(int(server_id))
|
||||
if guild:
|
||||
server_name = guild.name
|
||||
|
||||
options.append(discord.SelectOption(label=server_name, value=server_id))
|
||||
select_menus = []
|
||||
for i in range(0, len(options), 25):
|
||||
chunk = options[i:i+25]
|
||||
|
||||
select = discord.ui.Select(
|
||||
placeholder=f"Select servers to retrain ({i+1}-{min(i+25, len(options))})",
|
||||
min_values=1,
|
||||
max_values=len(chunk),
|
||||
options=chunk
|
||||
)
|
||||
|
||||
select_menus.append(select)
|
||||
view = discord.ui.View()
|
||||
for menu in select_menus:
|
||||
menu.callback = lambda interaction, m=menu: handle_server_selection(interaction, m)
|
||||
view.add_item(menu)
|
||||
|
||||
await ctx.send("Select which servers to retrain:", view=view)
|
||||
|
||||
async def handle_server_selection(interaction, select_menu):
|
||||
await interaction.response.defer()
|
||||
|
||||
selected_servers = select_menu.values
|
||||
if not selected_servers:
|
||||
return await interaction.followup.send("No servers selected.", ephemeral=True)
|
||||
|
||||
progress_msg = await interaction.followup.send(f"Retraining {len(selected_servers)} selected servers...")
|
||||
success_count = 0
|
||||
|
||||
for server_id in selected_servers:
|
||||
try:
|
||||
memory_file = f"memories/memory_{server_id}.json"
|
||||
with open(memory_file, 'r') as f:
|
||||
memory = json.load(f)
|
||||
|
||||
model = train_markov_model(memory, server_id=server_id)
|
||||
if model:
|
||||
success_count += 1
|
||||
if success_count % 5 == 0:
|
||||
await progress_msg.edit(content=f"Retraining in progress... {success_count}/{len(selected_servers)} completed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error retraining {server_id}: {e}")
|
||||
|
||||
await progress_msg.edit(content=f"Retraining complete Successfully retrained {success_count}/{len(selected_servers)} selected servers")
|
||||
|
||||
@bot.hybrid_command(description=f"{get_translation(LOCALE, 'command_desc_talk')}")
|
||||
async def talk(ctx, sentence_size: int = 5):
|
||||
server_id = ctx.guild.id if ctx.guild else "DM"
|
||||
markov_model = load_markov_model(server_id)
|
||||
|
||||
if not markov_model:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_talk_insufficent_text')}")
|
||||
return
|
||||
memory = load_memory(server_id)
|
||||
markov_model = train_markov_model(memory, server_id=server_id)
|
||||
if not markov_model:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_talk_insufficent_text')}")
|
||||
return
|
||||
|
||||
response = None
|
||||
for _ in range(20):
|
||||
|
@ -447,6 +562,7 @@ async def talk(ctx, sentence_size: int = 5):
|
|||
else:
|
||||
await send_message(ctx, f"{get_translation(LOCALE, 'command_talk_generation_fail')}")
|
||||
|
||||
|
||||
def improve_sentence_coherence(sentence):
|
||||
|
||||
sentence = sentence.replace(" i ", " I ")
|
||||
|
@ -492,8 +608,6 @@ async def help(ctx):
|
|||
|
||||
@bot.event
|
||||
async def on_message(message):
|
||||
global memory, markov_model, last_random_talk_time
|
||||
|
||||
if message.author.bot:
|
||||
return
|
||||
|
||||
|
@ -508,22 +622,29 @@ async def on_message(message):
|
|||
if profanity.contains_profanity(message.content):
|
||||
return
|
||||
|
||||
if message.content:
|
||||
if not USERTRAIN_ENABLED:
|
||||
return
|
||||
if message.content and USERTRAIN_ENABLED:
|
||||
server_id = message.guild.id if message.guild else "DM"
|
||||
memory = load_memory(server_id)
|
||||
|
||||
formatted_message = append_mentions_to_18digit_integer(message.content)
|
||||
cleaned_message = preprocess_message(formatted_message)
|
||||
|
||||
if cleaned_message:
|
||||
memory.append(cleaned_message)
|
||||
save_memory(memory)
|
||||
save_memory(memory, server_id)
|
||||
|
||||
# process any commands in the message
|
||||
await bot.process_commands(message)
|
||||
|
||||
|
||||
@bot.event
|
||||
async def on_interaction(interaction):
|
||||
print(f"{get_translation(LOCALE, 'command_ran_s').format(interaction=interaction)}{interaction.data['name']}")
|
||||
try:
|
||||
if interaction.type == discord.InteractionType.application_command:
|
||||
command_name = interaction.data.get('name', 'unknown')
|
||||
print(f"{get_translation(LOCALE, 'command_ran_s').format(interaction=interaction)}{command_name}")
|
||||
except Exception as e:
|
||||
print(f"{RED}Error handling interaction: {e}{RESET}")
|
||||
traceback.print_exc()
|
||||
|
||||
@bot.check
|
||||
async def block_blacklisted(ctx):
|
||||
|
@ -598,10 +719,13 @@ async def stats(ctx):
|
|||
async def mem(ctx):
|
||||
if showmemenabled != "true":
|
||||
return
|
||||
memory = load_memory()
|
||||
memory_text = json.dumps(memory, indent=4)
|
||||
with open(MEMORY_FILE, "r") as f:
|
||||
await send_message(ctx, file=discord.File(f, MEMORY_FILE))
|
||||
server_id = ctx.guild.id if ctx.guild else "DM"
|
||||
memory_file = f"memories/memory_{server_id}.json" if server_id else "memories/memory.json"
|
||||
try:
|
||||
with open(memory_file, "r") as f:
|
||||
await send_message(ctx, file=discord.File(f, memory_file))
|
||||
except FileNotFoundError:
|
||||
await send_message(ctx, f"No memory file found at {memory_file}")
|
||||
|
||||
def improve_sentence_coherence(sentence):
|
||||
sentence = sentence.replace(" i ", " I ")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue