lobotmized tf.py to work with metal
This commit is contained in:
parent
5dfe6449cb
commit
c84faaed50
1 changed files with 48 additions and 51 deletions
|
@ -7,27 +7,23 @@ import json
|
|||
from time import strftime, localtime
|
||||
import pickle
|
||||
import re
|
||||
from discord import app_commands
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.preprocessing.text import Tokenizer
|
||||
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Embedding, LSTM, Dense
|
||||
from tensorflow.keras.models import load_model
|
||||
from tensorflow.keras.backend import clear_session
|
||||
|
||||
ready: bool = True
|
||||
MODEL_MATCH_STRING = "[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
|
||||
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from keras.preprocessing.text import Tokenizer
|
||||
from keras_preprocessing.sequence import pad_sequences
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Embedding, LSTM, Dense
|
||||
from keras.models import load_model
|
||||
from keras.backend import clear_session
|
||||
tf.config.optimizer.set_jit(True)
|
||||
tf.config.optimizer.set_jit(False)
|
||||
except ImportError:
|
||||
print("ERROR: Failed to import Tensorflow. Here is a list of required dependencies:",(
|
||||
"tensorflow==2.10.0"
|
||||
"(for Nvidia users: tensorflow-gpu==2.10.0)"
|
||||
"(for macOS: tensorflow-metal==0.6.0, tensorflow-macos==2.10.0)"
|
||||
"numpy~=1.23"
|
||||
))
|
||||
print("ERROR: Failed to import TensorFlow.")
|
||||
ready = False
|
||||
|
||||
class Ai:
|
||||
|
@ -36,7 +32,7 @@ class Ai:
|
|||
if model_path:
|
||||
self.__load_model(model_path)
|
||||
self.is_loaded = model_path is not None
|
||||
self.batch_size = 64
|
||||
self.batch_size = 32
|
||||
|
||||
def get_model_name_from_path(self,path:str):
|
||||
print(path)
|
||||
|
@ -88,7 +84,7 @@ class Ai:
|
|||
self.tokenizer = Tokenizer()
|
||||
|
||||
with open("memory.json","r") as f:
|
||||
self.tokenizer.fit_on_sequences(json.load(f))
|
||||
self.tokenizer.fit_on_texts(json.load(f))
|
||||
self.is_loaded = True
|
||||
|
||||
def reload_model(self):
|
||||
|
@ -144,7 +140,7 @@ class Learning(Ai):
|
|||
x_pad = pad_sequences(X, maxlen=maxlen, padding="pre")
|
||||
y = np.array(y)
|
||||
|
||||
history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64) # Idelaly, validation data would be seperate from the actual data
|
||||
history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64) # Ideally, validation data would be separate from the actual data
|
||||
self.save_model(self.model,tokenizer,history,self.get_model_name_from_path(settings.get("model_path")))
|
||||
|
||||
class Generation(Ai):
|
||||
|
@ -257,43 +253,44 @@ class Tf(commands.Cog):
|
|||
generation = Generation()
|
||||
|
||||
|
||||
@commands.command()
|
||||
async def start(self,ctx):
|
||||
await ctx.defer()
|
||||
await ctx.send("hi")
|
||||
@app_commands.command(name="start", description="Starts the bot")
|
||||
async def start(self, interaction: discord.Interaction):
|
||||
await interaction.response.send_message("hi")
|
||||
|
||||
@commands.command()
|
||||
async def generate(self,ctx,seed:str,word_amount:int=5):
|
||||
await ctx.defer()
|
||||
await ctx.send(generation.generate_sentence(word_amount,seed))
|
||||
@app_commands.command(name="generate", description="Generates a sentence")
|
||||
async def generate(self, interaction: discord.Interaction, seed: str, word_amount: int = 5):
|
||||
await interaction.response.defer()
|
||||
sentence = generation.generate_sentence(word_amount, seed)
|
||||
await interaction.followup.send(sentence)
|
||||
|
||||
@commands.command()
|
||||
async def create(self,ctx):
|
||||
await ctx.defer()
|
||||
@app_commands.command(name="create", description="Trains the model with memory")
|
||||
async def create(self, interaction: discord.Interaction):
|
||||
await interaction.response.defer()
|
||||
with open("memory.json", "r") as f:
|
||||
memory: List[str] = json.load(f)
|
||||
learning.create_model(memory) # TODO: CHANGE
|
||||
await ctx.send("Trained succesfully!")
|
||||
await interaction.followup.send("Trained successfully!")
|
||||
|
||||
@commands.command()
|
||||
async def train(self,ctx):
|
||||
await ctx.defer()
|
||||
@app_commands.command(name="train", description="Trains the model further with memory")
|
||||
async def train(self, interaction: discord.Interaction):
|
||||
await interaction.response.defer()
|
||||
with open("memory.json", "r") as f:
|
||||
memory: List[str] = json.load(f)
|
||||
learning.add_training(memory, 2)
|
||||
await ctx.send("Finished!")
|
||||
await interaction.followup.send("Finished training!")
|
||||
|
||||
@commands.command()
|
||||
async def change(self,ctx,model:str=None):
|
||||
@app_commands.command(name="change", description="Change the model")
|
||||
async def change(self, interaction: discord.Interaction, model: str = None):
|
||||
embed = discord.Embed(title="Change model", description="Which model would you like to use?")
|
||||
if model is None:
|
||||
models: List[str] = os.listdir(os.path.join(".", "models"))
|
||||
models = [folder for folder in models if re.match(MODEL_MATCH_STRING, folder)]
|
||||
if len(models) == 0:
|
||||
models = ["No models available."]
|
||||
await ctx.send(embed=embed,view=DropdownView(90,models))
|
||||
await interaction.response.send_message(embed=embed, view=DropdownView(90, models))
|
||||
learning.reload_model()
|
||||
generation.reload_model()
|
||||
|
||||
|
||||
async def setup(bot):
|
||||
await bot.add_cog(Tf(bot))
|
Loading…
Add table
Add a link
Reference in a new issue