Merge pull request #3 from ctih1/main

This commit is contained in:
WhatDidYouExpect 2025-01-06 11:06:17 +01:00 committed by GitHub
commit cda46777a7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 116 additions and 72 deletions

View file

@ -9,4 +9,4 @@ by PowerPCFan
by expect
[TensorFlow integration](https://github.com/WhatDidYouExpect/goober/blob/main/customcommands/tf.py)
by SuperSilly2 (requires Python 3.11, tensorflow-metal/tensorflow-gpu and tensorflow/tensorflow-macos)
by SuperSilly2 (requires Python 3.7 - 3.10, tensorflow-metal/tensorflow-gpu and tensorflow/tensorflow-macos)

View file

@ -6,39 +6,71 @@ import numpy as np
import json
from time import strftime, localtime
import pickle
import functools
import re
from discord import app_commands
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.models import load_model
from tensorflow.keras.backend import clear_session
import time
import asyncio
ready: bool = True
MODEL_MATCH_STRING = "[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
try:
tf.config.optimizer.set_jit(False)
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.models import load_model
from keras.backend import clear_session
tf.config.optimizer.set_jit(True)
except ImportError:
print("ERROR: Failed to import TensorFlow.")
print("ERROR: Failed to import Tensorflow. Here is a list of required dependencies:",(
"tensorflow==2.10.0"
"(for Nvidia users: tensorflow-gpu==2.10.0)"
"(for macOS: tensorflow-metal==0.6.0, tensorflow-macos==2.10.0)"
"numpy~=1.23"
))
ready = False
class TFCallback(keras.callbacks.Callback):
def __init__(self,bot, progress_embed:discord.Embed, message):
self.embed:discord.Embed = progress_embed
self.bot:commands.Bot = bot
self.message = message
self.times:List[int] = [time.time()]
def on_train_begin(self, logs=None):
pass
async def send_message(self,message:str, description:str, **kwargs):
if "epoch" in kwargs:
self.times.append(time.time())
average_epoch_time:int = np.average(np.diff(np.array(self.times)))
description = f"ETA: {round(average_epoch_time)}s"
self.embed.add_field(name=f"<t:{round(time.time())}:t> - {message}",value=description,inline=False)
await self.message.edit(embed=self.embed)
def on_train_end(self,logs=None):
self.bot.loop.create_task(self.send_message("Training stopped", "training has been stopped."))
def on_epoch_begin(self, epoch, logs=None):
self.bot.loop.create_task(self.send_message(f"Starting epoch {epoch}","This might take a while", epoch=True))
def on_epoch_end(self, epoch, logs=None):
self.bot.loop.create_task(self.send_message(f"Epoch {epoch} ended",f"Accuracy: {round(logs.get('accuracy',0.0),4)}"))
class Ai:
def __init__(self):
model_path = settings.get("model_path")
if model_path:
self.__load_model(model_path)
self.is_loaded = model_path is not None
self.batch_size = 32
self.batch_size = 64
def get_model_name_from_path(self,path:str):
print(path)
match:re.Match = re.search(MODEL_MATCH_STRING, path)
print(match.start)
return path[match.start():][:match.end()]
def generate_model_name(self) -> str:
@ -84,7 +116,7 @@ class Ai:
self.tokenizer = Tokenizer()
with open("memory.json","r") as f:
self.tokenizer.fit_on_texts(json.load(f))
self.tokenizer.fit_on_sequences(json.load(f))
self.is_loaded = True
def reload_model(self):
@ -92,7 +124,11 @@ class Ai:
model_path:str = settings.get("model_path")
if model_path:
self.model = self.__load_model(model_path)
self.is_loaded = True
async def run_async(self,func,bot,*args,**kwargs):
func = functools.partial(func,*args,**kwargs)
return await bot.loop.run_in_executor(None,func)
class Learning(Ai):
def __init__(self):
@ -113,7 +149,8 @@ class Learning(Ai):
return x,y, tokenizer
def create_model(self,memory: List[str], iters:int=2):
def create_model(self,memory: list, iters:int=2):
memory = memory[:2000]
X,y,tokenizer = self.__generate_labels_and_inputs(memory)
maxlen:int = max([len(x) for x in X])
x_pad = pad_sequences(X, maxlen=maxlen, padding="pre")
@ -126,8 +163,10 @@ class Learning(Ai):
model.add(Dense(VOCAB_SIZE, activation="softmax"))
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
history = model.fit(x_pad, y, epochs=iters, batch_size=32)
history = model.fit(x_pad, y, epochs=iters, batch_size=64, callbacks=[tf_callback])
self.save_model(model, tokenizer, history)
return
def add_training(self,memory: List[str], iters:int=2):
tokenizer_path = os.path.join(settings.get("model_path"),"tokenizer.pkl")
@ -140,8 +179,9 @@ class Learning(Ai):
x_pad = pad_sequences(X, maxlen=maxlen, padding="pre")
y = np.array(y)
history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64) # Ideally, validation data would be separate from the actual data
history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64, callbacks=[tf_callback]) # Ideally, validation data would be seperate from the actual data
self.save_model(self.model,tokenizer,history,self.get_model_name_from_path(settings.get("model_path")))
return
class Generation(Ai):
def __init__(self):
@ -169,16 +209,16 @@ class Generation(Ai):
VOCAB_SIZE = 100_000
SETTINGS_TYPE = TypedDict("SETTINGS_TYPE", {
"model_path":str, # path to the base folder of the model, aka .../models/05-01-2025-22_31/
"tokenizer_path":str,
})
tf_callback:TFCallback
model_dropdown_items = []
settings: SETTINGS_TYPE = {}
target_message:int
learning:Learning
generation: Generation
@ -233,64 +273,68 @@ class DropdownView(discord.ui.View):
class Tf(commands.Cog):
@staticmethod
def needs_ready(func):
def inner(args:tuple, kwargs:dict):
if not ready:
raise AttributeError("Not ready!")
a = func(*args, **kwargs)
return a
return inner
def __init__(self,bot):
global learning, generation
global ready
global learning, generation, ready
os.makedirs(os.path.join(".","models"),exist_ok=True)
Settings().load()
self.bot = bot
learning = Learning()
generation = Generation()
@commands.command()
async def start(self,ctx):
await ctx.defer()
await ctx.send("hi")
@app_commands.command(name="start", description="Starts the bot")
async def start(self, interaction: discord.Interaction):
await interaction.response.send_message("hi")
@commands.command()
async def generate(self,ctx,seed:str,word_amount:int=5):
await ctx.defer()
await ctx.send(generation.generate_sentence(word_amount,seed))
@app_commands.command(name="generate", description="Generates a sentence")
async def generate(self, interaction: discord.Interaction, seed: str, word_amount: int = 5):
await interaction.response.defer()
sentence = generation.generate_sentence(word_amount, seed)
await interaction.followup.send(sentence)
@app_commands.command(name="create", description="Trains the model with memory")
async def create(self, interaction: discord.Interaction):
await interaction.response.defer()
@commands.command()
async def create(self,ctx:commands.Context, epochs:int=3):
global tf_callback
await ctx.defer()
with open("memory.json","r") as f:
memory:List[str] = json.load(f)
learning.create_model(memory) # TODO: CHANGE
await interaction.followup.send("Trained successfully!")
await ctx.send("Initializing tensorflow")
embed = discord.Embed(title="Creating a model...", description="Progress of creating a model")
embed.set_footer(text="Note: Progress tracking might report delayed / wrong data, since the function is run asynchronously")
target_message:discord.Message = await ctx.send(embed=embed)
@app_commands.command(name="train", description="Trains the model further with memory")
async def train(self, interaction: discord.Interaction):
await interaction.response.defer()
tf_callback = TFCallback(self.bot,embed,target_message)
await learning.run_async(learning.create_model,self.bot,memory,epochs)
embed = target_message.embeds[0]
embed.add_field(name=f"<t:{round(time.time())}:t> Finished",value="Model saved.")
await target_message.edit(embed=embed)
@commands.command()
async def train(self,ctx, epochs:int=2):
global tf_callback
await ctx.defer()
with open("memory.json","r") as f:
memory:List[str] = json.load(f)
learning.add_training(memory, 2)
await interaction.followup.send("Finished training!")
@app_commands.command(name="change", description="Change the model")
async def change(self, interaction: discord.Interaction, model: str = None):
embed = discord.Embed(title="Training model...", description="Progress of training model")
target_message = await ctx.send(embed=embed)
tf_callback = TFCallback(self.bot,embed,target_message)
await learning.run_async(learning.add_training,self.bot,memory,epochs)
await ctx.send("Finished!")
@commands.command()
async def change(self,ctx,model:str=None):
embed = discord.Embed(title="Change model",description="Which model would you like to use?")
if model is None:
models:List[str] = os.listdir(os.path.join(".","models"))
models = [folder for folder in models if re.match(MODEL_MATCH_STRING,folder)]
if len(models) == 0:
models = ["No models available."]
await interaction.response.send_message(embed=embed, view=DropdownView(90, models))
await ctx.send(embed=embed,view=DropdownView(90,models))
learning.reload_model()
generation.reload_model()
async def setup(bot):
await bot.add_cog(Tf(bot))