why did they call the song rule #34 if it has nothing to do with rule34
This commit is contained in:
parent
54b8bf4c59
commit
dec83f1513
4 changed files with 5 additions and 173 deletions
|
@ -8,9 +8,6 @@ by PowerPCFan
|
|||
[Cog Manager](https://github.com/WhatDidYouExpect/goober/blob/main/cogs/cogmanager.py)
|
||||
by expect
|
||||
|
||||
[TensorFlow integration](https://github.com/WhatDidYouExpect/goober/blob/main/cogs/tf.py)
|
||||
by SuperSilly2 (requires Python 3.7 - 3.10, tensorflow-metal/tensorflow-gpu and tensorflow/tensorflow-macos)
|
||||
|
||||
[Web Scraper](https://raw.githubusercontent.com/WhatDidYouExpect/goober/refs/heads/main/cogs/webscraper.py)
|
||||
by expect (requires goober version 0.11.7.2 or higher)
|
||||
|
||||
|
|
|
@ -1,155 +0,0 @@
|
|||
import discord
|
||||
from discord.ext import commands
|
||||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
import pickle
|
||||
import functools
|
||||
import re
|
||||
import time
|
||||
import asyncio
|
||||
|
||||
ready = True
|
||||
MODEL_MATCH_STRING = r"[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}"
|
||||
|
||||
try:
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.preprocessing.text import Tokenizer
|
||||
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
||||
from tensorflow.keras.models import Sequential, load_model
|
||||
from tensorflow.keras.layers import Embedding, LSTM, Dense
|
||||
from tensorflow.keras.backend import clear_session
|
||||
|
||||
if tf.config.list_physical_devices('GPU'):
|
||||
print("Using GPU acceleration")
|
||||
elif tf.config.list_physical_devices('Metal'):
|
||||
print("Using Metal for macOS acceleration")
|
||||
except ImportError:
|
||||
print("ERROR: Failed to import TensorFlow. Ensure you have the correct dependencies:")
|
||||
print("tensorflow>=2.15.0")
|
||||
print("For macOS (Apple Silicon): tensorflow-metal")
|
||||
ready = False
|
||||
|
||||
|
||||
class TFCallback(keras.callbacks.Callback):
|
||||
def __init__(self, bot, progress_embed: discord.Embed, message):
|
||||
self.embed = progress_embed
|
||||
self.bot = bot
|
||||
self.message = message
|
||||
self.times = [time.time()]
|
||||
|
||||
async def send_message(self, message: str, description: str, **kwargs):
|
||||
if "epoch" in kwargs:
|
||||
self.times.append(time.time())
|
||||
avg_epoch_time = np.mean(np.diff(self.times))
|
||||
description = f"ETA: {round(avg_epoch_time)}s"
|
||||
self.embed.add_field(name=f"<t:{round(time.time())}:t> - {message}", value=description, inline=False)
|
||||
await self.message.edit(embed=self.embed)
|
||||
|
||||
def on_train_end(self, logs=None):
|
||||
self.bot.loop.create_task(self.send_message("Training stopped", "Training has been stopped."))
|
||||
|
||||
def on_epoch_begin(self, epoch, logs=None):
|
||||
self.bot.loop.create_task(self.send_message(f"Starting epoch {epoch}", "This might take a while", epoch=True))
|
||||
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
self.bot.loop.create_task(self.send_message(f"Epoch {epoch} ended", f"Accuracy: {round(logs.get('accuracy', 0.0), 4)}"))
|
||||
|
||||
|
||||
class Ai:
|
||||
def __init__(self):
|
||||
model_path = settings.get("model_path")
|
||||
if model_path:
|
||||
self.__load_model(model_path)
|
||||
self.is_loaded = model_path is not None
|
||||
self.batch_size = 64
|
||||
|
||||
def generate_model_name(self):
|
||||
return time.strftime('%d_%m_%Y-%H_%M', time.localtime())
|
||||
|
||||
def __load_model(self, model_path):
|
||||
clear_session()
|
||||
self.model = load_model(os.path.join(model_path, "model.h5"))
|
||||
model_name = os.path.basename(model_path)
|
||||
try:
|
||||
with open(os.path.join(model_path, "tokenizer.pkl"), "rb") as f:
|
||||
self.tokenizer = pickle.load(f)
|
||||
except FileNotFoundError:
|
||||
print("Failed to load tokenizer, using default.")
|
||||
self.tokenizer = Tokenizer()
|
||||
with open("memory.json", "r") as f:
|
||||
self.tokenizer.fit_on_texts(json.load(f))
|
||||
self.is_loaded = True
|
||||
|
||||
def reload_model(self):
|
||||
clear_session()
|
||||
model_path = settings.get("model_path")
|
||||
if model_path:
|
||||
self.__load_model(model_path)
|
||||
self.is_loaded = True
|
||||
|
||||
async def run_async(self, func, bot, *args, **kwargs):
|
||||
return await bot.loop.run_in_executor(None, functools.partial(func, *args, **kwargs))
|
||||
|
||||
|
||||
class Learning(Ai):
|
||||
def create_model(self, memory, epochs=2):
|
||||
memory = memory[:2000]
|
||||
tokenizer = Tokenizer()
|
||||
tokenizer.fit_on_texts(memory)
|
||||
sequences = tokenizer.texts_to_sequences(memory)
|
||||
X, y = [], []
|
||||
for seq in sequences:
|
||||
for i in range(1, len(seq)):
|
||||
X.append(seq[:i])
|
||||
y.append(seq[i])
|
||||
maxlen = max(map(len, X))
|
||||
X = pad_sequences(X, maxlen=maxlen, padding="pre")
|
||||
y = np.array(y)
|
||||
|
||||
model = Sequential([
|
||||
Embedding(input_dim=VOCAB_SIZE, output_dim=128, input_length=maxlen),
|
||||
LSTM(64),
|
||||
Dense(VOCAB_SIZE, activation="softmax")
|
||||
])
|
||||
|
||||
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
||||
history = model.fit(X, y, epochs=epochs, batch_size=64, callbacks=[tf_callback])
|
||||
self.save_model(model, tokenizer, history)
|
||||
|
||||
def save_model(self, model, tokenizer, history, name=None):
|
||||
name = name or self.generate_model_name()
|
||||
model_dir = os.path.join("models", name)
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
with open(os.path.join(model_dir, "info.json"), "w") as f:
|
||||
json.dump(history.history, f)
|
||||
with open(os.path.join(model_dir, "tokenizer.pkl"), "wb") as f:
|
||||
pickle.dump(tokenizer, f)
|
||||
model.save(os.path.join(model_dir, "model.h5"))
|
||||
|
||||
|
||||
class Generation(Ai):
|
||||
def generate_sentence(self, word_amount, seed):
|
||||
if not self.is_loaded:
|
||||
return False
|
||||
for _ in range(word_amount):
|
||||
token_list = self.tokenizer.texts_to_sequences([seed])[0]
|
||||
token_list = pad_sequences([token_list], maxlen=self.model.input_shape[1], padding="pre")
|
||||
predicted_word_index = np.argmax(self.model.predict(token_list, verbose=0), axis=-1)[0]
|
||||
output_word = next((w for w, i in self.tokenizer.word_index.items() if i == predicted_word_index), "")
|
||||
seed += " " + output_word
|
||||
return seed
|
||||
|
||||
|
||||
VOCAB_SIZE = 100_000
|
||||
settings = {}
|
||||
learning = Learning()
|
||||
generation = Generation()
|
||||
|
||||
tf_callback = None
|
||||
|
||||
|
||||
async def setup(bot):
|
||||
await bot.add_cog(Tf(bot))
|
Loading…
Add table
Add a link
Reference in a new issue