import discord from discord.ext import commands import os from typing import List, TypedDict import numpy as np import json from time import strftime, localtime import pickle import re from discord import app_commands import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, LSTM, Dense from tensorflow.keras.models import load_model from tensorflow.keras.backend import clear_session ready: bool = True MODEL_MATCH_STRING = "[0-9]{2}_[0-9]{2}_[0-9]{4}-[0-9]{2}_[0-9]{2}" try: tf.config.optimizer.set_jit(False) except ImportError: print("ERROR: Failed to import TensorFlow.") ready = False class Ai: def __init__(self): model_path = settings.get("model_path") if model_path: self.__load_model(model_path) self.is_loaded = model_path is not None self.batch_size = 32 def get_model_name_from_path(self,path:str): print(path) match:re.Match = re.search(MODEL_MATCH_STRING, path) print(match.start) return path[match.start():][:match.end()] def generate_model_name(self) -> str: return strftime('%d_%m_%Y-%H_%M', localtime()) def generate_model_abs_path(self, name:str): name = name or self.generate_model_name() return os.path.join(".","models",self.generate_model_name(),"model.h5") def generate_tokenizer_abs_path(self, name:str): name = name or self.generate_model_name() return os.path.join(".","models",name,"tokenizer.pkl") def generate_info_abs_path(self,name:str): name = name or self.generate_model_name() return os.path.join(".","models",name,"info.json") def save_model(self,model, tokenizer, history, _name:str=None): name:str = _name or self.generate_model_name() os.makedirs(os.path.join(".","models",name), exist_ok=True) with open(self.generate_info_abs_path(name),"w") as f: json.dump(history.history,f) with open(self.generate_tokenizer_abs_path(name), "wb") as f: pickle.dump(tokenizer,f) model.save(self.generate_model_abs_path(name)) def __load_model(self, model_path:str): clear_session() self.model = load_model(os.path.join(model_path,"model.h5")) model_name:str = self.get_model_name_from_path(model_path) try: with open(self.generate_tokenizer_abs_path(model_name),"rb") as f: self.tokenizer = pickle.load(f) except FileNotFoundError: print("Failed to load tokenizer for model... Using default") self.tokenizer = Tokenizer() with open("memory.json","r") as f: self.tokenizer.fit_on_texts(json.load(f)) self.is_loaded = True def reload_model(self): clear_session() model_path:str = settings.get("model_path") if model_path: self.model = self.__load_model(model_path) class Learning(Ai): def __init__(self): super().__init__() def __generate_labels_and_inputs(self,memory: List[str], tokenizer=None) -> tuple: if not tokenizer: tokenizer = Tokenizer() tokenizer.fit_on_texts(memory) sequences = tokenizer.texts_to_sequences(memory) x = [] y = [] for seq in sequences: for i in range(1, len(seq)): x.append(seq[:i]) y.append(seq[i]) return x,y, tokenizer def create_model(self,memory: List[str], iters:int=2): X,y,tokenizer = self.__generate_labels_and_inputs(memory) maxlen:int = max([len(x) for x in X]) x_pad = pad_sequences(X, maxlen=maxlen, padding="pre") y = np.array(y) model = Sequential() model.add(Embedding(input_dim=VOCAB_SIZE,output_dim=128,input_length=maxlen)) model.add(LSTM(64)) model.add(Dense(VOCAB_SIZE, activation="softmax")) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit(x_pad, y, epochs=iters, batch_size=32) self.save_model(model, tokenizer, history) def add_training(self,memory: List[str], iters:int=2): tokenizer_path = os.path.join(settings.get("model_path"),"tokenizer.pkl") with open(tokenizer_path, "rb") as f: tokenizer = pickle.load(f) X,y,_ = self.__generate_labels_and_inputs(memory, tokenizer) maxlen:int = max([len(x) for x in X]) x_pad = pad_sequences(X, maxlen=maxlen, padding="pre") y = np.array(y) history = self.model.fit(x_pad,y, epochs=iters, validation_data=(x_pad,y), batch_size=64) # Ideally, validation data would be separate from the actual data self.save_model(self.model,tokenizer,history,self.get_model_name_from_path(settings.get("model_path"))) class Generation(Ai): def __init__(self): super().__init__() def generate_sentence(self, word_amount:int, seed:str): if not self.is_loaded: return False for _ in range(word_amount): token_list = self.tokenizer.texts_to_sequences([seed])[0] token_list = pad_sequences([token_list], maxlen=self.model.layers[0].input_shape[1], padding="pre") output_word = "" # Sometimes model fails to predict the word, so using a fallback predicted_probs = self.model.predict(token_list, verbose=0) predicted_word_index = np.argmax(predicted_probs, axis=-1)[0] for word, index in self.tokenizer.word_index.items(): if index == predicted_word_index: output_word = word break seed += " " + output_word return seed VOCAB_SIZE = 100_000 SETTINGS_TYPE = TypedDict("SETTINGS_TYPE", { "model_path":str, # path to the base folder of the model, aka .../models/05-01-2025-22_31/ "tokenizer_path":str, }) model_dropdown_items = [] settings: SETTINGS_TYPE = {} learning:Learning generation: Generation class Settings: def __init__(self): self.settings_path:str = os.path.join(".","models","settings.json") def load(self): global settings try: with open(self.settings_path,"r") as f: settings = json.load(f) except FileNotFoundError: with open(self.settings_path,"w") as f: json.dump({},f) def change_model(self,new_model_base_path:str): global settings new_model_path = os.path.join(".","models",new_model_base_path) with open(self.settings_path,"r") as f: settings = json.load(f) settings["model_path"] = new_model_path with open(self.settings_path, "w") as f: json.dump(settings,f) class Dropdown(discord.ui.Select): def __init__(self, items:List[str]): global model_dropdown_items model_dropdown_items = [] for item in items: model_dropdown_items.append( discord.SelectOption(label=item) ) super().__init__(placeholder="Select model", options=model_dropdown_items) async def callback(self, interaction: discord.Interaction): if int(interaction.user.id) != int(os.getenv("ownerid")): await interaction.message.channel.send("KILL YOURSELF") Settings().change_model(self.values[0]) await interaction.message.channel.send(f"Changed model to {self.values[0]}") class DropdownView(discord.ui.View): def __init__(self, timeout, models): super().__init__(timeout=timeout) self.add_item(Dropdown(models)) class Tf(commands.Cog): @staticmethod def needs_ready(func): def inner(args:tuple, kwargs:dict): if not ready: raise AttributeError("Not ready!") a = func(*args, **kwargs) return a return inner def __init__(self, bot): global learning, generation global ready os.makedirs(os.path.join(".","models"), exist_ok=True) Settings().load() self.bot = bot learning = Learning() generation = Generation() @app_commands.command(name="start", description="Starts the bot") async def start(self, interaction: discord.Interaction): await interaction.response.send_message("hi") @app_commands.command(name="generate", description="Generates a sentence") async def generate(self, interaction: discord.Interaction, seed: str, word_amount: int = 5): await interaction.response.defer() sentence = generation.generate_sentence(word_amount, seed) await interaction.followup.send(sentence) @app_commands.command(name="create", description="Trains the model with memory") async def create(self, interaction: discord.Interaction): await interaction.response.defer() with open("memory.json", "r") as f: memory: List[str] = json.load(f) learning.create_model(memory) # TODO: CHANGE await interaction.followup.send("Trained successfully!") @app_commands.command(name="train", description="Trains the model further with memory") async def train(self, interaction: discord.Interaction): await interaction.response.defer() with open("memory.json", "r") as f: memory: List[str] = json.load(f) learning.add_training(memory, 2) await interaction.followup.send("Finished training!") @app_commands.command(name="change", description="Change the model") async def change(self, interaction: discord.Interaction, model: str = None): embed = discord.Embed(title="Change model", description="Which model would you like to use?") if model is None: models: List[str] = os.listdir(os.path.join(".", "models")) models = [folder for folder in models if re.match(MODEL_MATCH_STRING, folder)] if len(models) == 0: models = ["No models available."] await interaction.response.send_message(embed=embed, view=DropdownView(90, models)) learning.reload_model() generation.reload_model() async def setup(bot): await bot.add_cog(Tf(bot))